6 research outputs found

    Biomarkers in Painful Symptomatic Knee OA Demonstrate That MRI Assessed Joint Damage and Type II Collagen Degradation Products Are Linked to Disease Progression

    Get PDF
    Background: Osteoarthritis (OA) is the most prevalent arthritis worldwide, but the evolution of pain in relation to joint damage and biochemical markers are not well understood. We evaluated the relation between clinical pain measures and evoked pain in relation to structural damage and biochemical biomarkers in knee OA. Methods: A cross-sectional study in people with knee OA and healthy controls was conducted. A total of 130 participants with advanced OA requiring total knee replacement (TKR) (n = 78), mild OA having standard care (n = 42) and non-OA controls (n = 6), with four drop-outs were assessed. Pain scoring was performed by the Western Ontario and McMaster Universities OA Index (WOMAC_P) and the Visual Analog Scale (VAS). Pain sensitization was assessed by pain pressure thresholds (PPTs). Knee magnetic resonance imaging (MRI) assessed joint damage using the MRI Knee OA Score (MOAKS). Overall MOAKS scores were created for bone marrow lesions (BMLs), cartilage degradation (CD), and effusion/Hoffa synovitis (tSyn). Type II collagen cleavage products (CTX-II) were determined by ELISA. Results: The advanced OA group had a mean age of 68.9 ± 7.7 years and the mild group 63.1 ± 9.6. The advanced OA group had higher levels of pain, with mean WOMAC_P of 58.8 ± 21.7 compared with the mild OA group of 40.6 ± 26.0. All OA subjects had pain sensitization by PPT compared with controls (p < 0.05). WOMAC_P correlated with the total number of regions with cartilage damage (nCD) (R = 0.225, p = 0.033) and total number of BMLs (nBML) (R = 0.195, p = 0.065) using body mass index (BMI), age, and Hospital Anxiety and Depression Scale (HADS) as covariates. Levels of CTX-II correlated with tSyn (R = 0.313, p = 0.03), nBML (R = 0.252, p = 0.019), number of osteophytes (R = 0.33, p = 0.002), and nCD (R = 0.218, p = 0.042), using BMI and age as covariates. A multivariate analysis indicated that BMI and HADS were the most significant predictors of pain scores (p < 0.05). Conclusion: People with both mild and advanced OA show features of pain sensitization. We found that increasing MRI-detected joint damage was associated with higher levels of CTX-II, suggesting that increasing disease severity can be assessed by MRI and CTX-II biomarkers to evaluate OA disease progression

    Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation

    Get PDF
    Objective Bone marrow lesions (BMLs) are well described in osteoarthritis (OA) using MRI and are associated with pain, but little is known about their pathological characteristics and gene expression. We evaluated BMLs using novel tissue analysis tools to gain a deeper understanding of their cellular and molecular expression. Methods We recruited 98 participants, 72 with advanced OA requiring total knee replacement (TKR), 12 with mild OA and 14 non-OA controls. Participants were assessed for pain (using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)) and with a knee MRI (using MOAKS). Tissue was then harvested at TKR for BML analysis using histology and tissue microarray. Results The mean (SD) WOMAC pain scores were significantly increased in advanced OA 59.4 (21.3) and mild OA 30.9 (20.3) compared with controls 0.5 (1.28) (p<0.0001). MOAKS showed all TKR tissue analysed had BMLs, and within these lesions, bone marrow volume was starkly reduced being replaced by dense fibrous connective tissue, new blood vessels, hyaline cartilage and fibrocartilage. Microarray comparing OA BML and normal bone found a significant difference in expression of 218 genes (p<0.05). The most upregulated genes included stathmin 2, thrombospondin 4, matrix metalloproteinase 13 and Wnt/Notch/catenin/chemokine signalling molecules that are known to constitute neuronal, osteogenic and chondrogenic pathways. Conclusion Our study is the first to employ detailed histological analysis and microarray techniques to investigate knee OA BMLs. BMLs demonstrated areas of high metabolic activity expressing pain sensitisation, neuronal, extracellular matrix and proinflammatory signalling genes that may explain their strong association with pain

    Clinical Study Quantitative Sensory Testing in Painful Hand Osteoarthritis Demonstrates Features of Peripheral Sensitisation

    No full text
    Hand osteoarthritis (HOA) is a prevalent condition for which treatments are based on analgesia and physical therapies. Our primary objective was to evaluate pain perception in participants with HOA by assessing the characteristics of nodal involvement, pain threshold in each hand joint, and radiological severity. We hypothesised that inflammation in hand osteoarthritis joints enhances sensitivity and firing of peripheral nociceptors, thereby causing chronic pain. Participants with proximal and distal interphalangeal (PIP and DIP) joint HOA and non-OA controls were recruited. Clinical parameters of joint involvement were measured including clinical nodes, VAS (visual analogue score) for pain (0-100 mm scale), HAQ (health assessment questionnaire), and Kellgren-Lawrence scores for radiological severity and pain threshold measurement were performed. The mean VAS in HOA participants was 59.3 mm ± 8.19 compared with 4.0 mm ± 1.89 in the control group (P &lt; 0.0001). Quantitative sensory testing (QST) demonstrated lower pain thresholds in DIP/PIP joints and other subgroups in the OA group including the thumb, metacarpophalangeal (MCPs), joints, and wrists (P &lt; 0.008) but not in controls (P = 0.348). Our data demonstrate that HOA subjects are sensitised to pain due to increased firing of peripheral nociceptors. Future work to evaluate mechanisms of peripheral sensitisation warrants further investigation

    The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip

    No full text
    BACKGROUND: The purpose of this study was to assess the diagnostic test accuracy of magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA) and multidetector arrays in CT arthrography (MDCT) for assessing chondral lesions in the hip joint. MATERIALS AND METHODS: A review of the published and unpublished literature databases was performed to identify all studies reporting the diagnostic test accuracy (sensitivity/specificity) of MRI, MRA or MDCT for the assessment of adults with chondral (cartilage) lesions of the hip with surgical comparison (arthroscopic or open) as the reference test. All included studies were reviewed using the quality assessment of diagnostic accuracy studies appraisal tool. Pooled sensitivity, specificity, likelihood ratios and diagnostic odds ratios were calculated with 95 % confidence intervals using a random-effects meta-analysis for MRI, MRA and MDCT imaging. RESULTS: Eighteen studies satisfied the eligibility criteria. These included 648 hips from 637 patients. MRI indicated a pooled sensitivity of 0.59 (95 % CI: 0.49-0.70) and specificity of 0.94 (95 % CI: 0.90-0.97), and MRA sensitivity and specificity values were 0.62 (95 % CI: 0.57-0.66) and 0.86 (95 % CI: 0.83-0.89), respectively. The diagnostic test accuracy for the detection of hip joint cartilage lesions is currently superior for MRI compared with MRA. There were insufficient data to perform meta-analysis for MDCT or CTA protocols. CONCLUSIONS: Based on the current limited diagnostic test accuracy of the use of magnetic resonance or CT, arthroscopy remains the most accurate method of assessing chondral lesions in the hip joint
    corecore